.. _program_listing_file_src_genetic_algorithm.cpp: Program Listing for File genetic_algorithm.cpp ============================================== |exhale_lsh| :ref:`Return to documentation for file ` (``src/genetic_algorithm.cpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp #include "path_planning/genetic_algorithm.hpp" #include #include // TODO(vss): replace setw #include #include #include constexpr int random_range_max = 100; constexpr int inverted_probabilty_mutate = 10; void GeneticAlgorithm::SetParams(const int generations, const int popsize, const double c, const bool shorten_chromosome, const int path_length) { generations_ = generations; popsize_ = popsize; c_ = c; shorten_chromosome_ = shorten_chromosome; path_length_ = path_length; } std::tuple> GeneticAlgorithm::Plan(const Node &start, const Node &goal) { int generation = 0; start_ = start; goal_ = goal; grid_ = original_grid_; motions_ = GetMotion(); // Create initial chromosome std::vector initial_path = GenerateSimplePath(); paths_.push_back(initial_path); // Check first path to goal if (CheckPath(initial_path)) { truepaths_.push_back(initial_path); } // Allow while loop to continue beyond path found to find optimum path while (generation <= generations_) { size_t paths_size = paths_.size(); std::vector f_vals(paths_size); std::transform( paths_.begin(), paths_.end(), f_vals.begin(), [&](const std::vector &path) { return CalculateFitness(path); }); f_val = *std::min_element(f_vals.begin(), f_vals.end()); std::vector> new_paths_; for (int i = 0; i < paths_.size(); ++i) { // c provides a margin of error from best path if (f_vals[i] <= f_val * c_) { if (shorten_chromosome_) { const int len = std::min(paths_[i].size(), path_length_); new_paths_.emplace_back(std::vector( paths_[i].begin(), std::next(paths_[i].begin(), len))); } else { new_paths_.push_back(paths_[i]); } } } if (!new_paths_.empty()) { std::swap(paths_, new_paths_); } if (paths_.size() < popsize_) { while (paths_.size() < popsize_) { if (rand() % inverted_probabilty_mutate == 0) { paths_.emplace_back(Mutate()); } else { paths_.emplace_back(Crossover()); } } } else { paths_[rand() % paths_.size()] = Mutate(); } // TODO(vss): Consider dynamically modifying path length to move towards // optimality for (const auto &path_seen : paths_) { int tmp_length = std::numeric_limits::max(); if (CheckPath(path_seen)) { found_ = true; if (truepaths_.size() > (n_ * n_)) { truepaths_[rand() % (n_ * n_)] = path_seen; } else { truepaths_.push_back(path_seen); } if (shorten_chromosome_) { auto tmp = start_; if (path_seen.size() < tmp_length) { tmp_length = path_seen.size(); } if (CompareCoordinates(tmp, goal_)) { tmp_length = 0; } for (size_t i = 0; i < path_seen.size(); i++) { tmp = tmp + path_seen[i]; if (CompareCoordinates(tmp, goal_)) { tmp_length = i; break; } } path_length_ = tmp_length; } } // PrintChromosome(path_seen); } generation++; } // std::cout << "True paths: " << truepaths_.size() << '\n'; // if(!truepaths_.empty())std::cout << "True paths: " << '\n'; // for(int i=0;i GeneticAlgorithm::ReturnLastPath() const { if (truepaths_.empty()) { return {}; } std::vector f_vals(truepaths_.size()); std::transform(truepaths_.begin(), truepaths_.end(), f_vals.begin(), f_vals.begin(), [&](const std::vector &path, const int /* f_vals_v */) { return CalculateFitness(path); }); const int best_path_index = std::distance( f_vals.begin(), std::min_element(f_vals.begin(), f_vals.end())); std::vector node_path; node_path.push_back(start_); node_path.back().pid_ = node_path.back().id_; Node current = start_; for (const auto &motion : truepaths_[best_path_index]) { current = current + motion; current.pid_ = node_path.back().id_; current.id_ = n_ * current.x_ + current.y_; node_path.push_back(current); if (CompareCoordinates(current, goal_)) { break; } } return node_path; } #ifdef CUSTOM_DEBUG_HELPER_FUNCION void GeneticAlgorithm::CheckIfNodesInPathAreAcceptable( const std::vector &path) const { for (const auto &motion : path) { bool found = false; for (const auto &m : motions_) { if (CompareCoordinates(m, motion)) { found = true; break; } } if (!found) { motion.PrintStatus(); exit(0); } } } void GeneticAlgorithm::PrintChromosome(const std::vector &path) const { std::cout << "Chromosome: "; for (const auto &v : path) { for (size_t i = 0; i < motions_.size(); i++) if (CompareCoordinates(v, motions_[i])) { std::cout << i << " "; } } std::cout << "Fitness value: " << CalculateFitness(path) << '\n'; } void GeneticAlgorithm::PrintPathOfChromosome( const std::vector &path) const { std::cout << "Path: "; Node tmp = start_; std::cout << "(" << tmp.x_ << "," << tmp.y_ << ")" << std::setw(3); for (auto v : path) { tmp = tmp + v; std::cout << "(" << tmp.x_ << "," << tmp.y_ << ")" << std::setw(3); } std::cout << '\n'; } #endif // CUSTOM_DEBUG_HELPER_FUNCION std::vector GeneticAlgorithm::GenerateSimplePath() const { int d_x = goal_.x_ - start_.x_; int d_y = goal_.y_ - start_.y_; Node dx(d_x >= 0 ? 1 : -1, 0); Node dy(0, d_y >= 0 ? 1 : -1); std::vector path(path_length_); auto it = path.begin(); std::fill_n(it, std::abs(d_x), dx); std::advance(it, std::abs(d_x)); std::fill_n(it, std::abs(d_y), dy); std::advance(it, std::abs(d_y)); std::generate_n(it, std::distance(it, path.end()), [&]() { return motions_[rand() % 4]; }); return path; } int GeneticAlgorithm::CalculateFitness(const std::vector &path) const { int cost = 0; Node i = start_; for (const auto &p : path) { i = i + p; if (i.x_ < 0 || i.x_ >= n_ || i.y_ < 0 || i.y_ >= n_) { return std::numeric_limits::max(); } if (CompareCoordinates(i, goal_)) { break; } if (grid_[i.x_][i.y_] == 1) { cost += n_ * abs(goal_.x_ - i.x_) + n_ * abs(goal_.y_ - i.y_); } else { // Can add a scaling factor here cost += abs(goal_.x_ - i.x_) + abs(goal_.y_ - i.y_); } } return cost; } std::vector GeneticAlgorithm::GenerateRandomPath() const { std::random_device rd; std::mt19937 eng(rd()); std::vector path(path_length_); if (path_length_ > 0) { std::uniform_int_distribution distr( 0, motions_.size() - 1); // define the range std::generate_n(path.begin(), path_length_, [&]() { return motions_[distr(eng)]; }); } return path; } std::vector GeneticAlgorithm::Mutate() const { std::random_device rd; std::mt19937 eng(rd()); std::vector path; if (truepaths_.size() > 3 && rand() % 4 == 0) { path = truepaths_[rand() % truepaths_.size()]; } else { path = GenerateRandomPath(); } if (path.empty()) { return path; } int index_1 = static_cast(rand() % path.size()); int index_2 = static_cast(rand() % path.size()); if (index_2 < index_1) { std::swap(index_1, index_2); } std::shuffle(path.begin() + index_1, path.begin() + index_2, eng); return path; } std::vector GeneticAlgorithm::Crossover() const { int p1 = static_cast(rand() % paths_.size()); int p2 = static_cast(rand() % paths_.size()); const size_t len = std::max(std::max(paths_[p1].size(), paths_[p2].size()), path_length_); std::vector child; child.reserve(len); Node current = start_; int index = 0; int attempt_count = 0; while (index < len) { int random_int = rand() % random_range_max; Node motion; if (random_int < random_range_max / 4 && paths_[p1].size() > index) { motion = paths_[p1][index]; } else if (random_int < random_range_max / 2 && paths_[p2].size() > index) { motion = paths_[p2][index]; } else { motion = motions_[rand() % motions_.size()]; } // Prevents the new chromosome from going beyond the grid // Added as a very large percentage (majority) of these are out of bounds, // and a waste of resources Chromosomes that contain paths travelling over // obstacles are still allowed after a point if (auto new_node = current + motion; !checkOutsideBoundary(new_node, n_)) { if (grid_[new_node.x_][new_node.y_] != 1 || attempt_count > n_ * n_) { current = new_node; child.push_back(motion); ++index; } } ++attempt_count; } return child; } // NOTE: Consider storing the point where an obstacle is encountereed and forcig // that gene/motion to randomly mutate for a quicker convergence to a solution // while maintaining randomness bool GeneticAlgorithm::CheckPath(const std::vector &path) const { Node current = start_; if (CompareCoordinates(current, goal_)) { return true; } for (const auto &node : path) { current = current + node; if (CompareCoordinates(current, goal_)) { return true; } if (checkOutsideBoundary(current, n_)) { return false; } if (grid_[current.x_][current.y_] == 1) { return false; } } return CompareCoordinates(current, goal_); } #ifdef BUILD_INDIVIDUAL int main() { constexpr int n = 11; std::vector> grid(n, std::vector(n, 0)); MakeGrid(grid); std::random_device rd; // obtain a random number from hardware std::mt19937 eng(rd()); // seed the generator std::uniform_int_distribution distr(0, n - 1); // define the range Node start(distr(eng), distr(eng), 0, 0, 0, 0); Node goal(distr(eng), distr(eng), 0, 0, 0, 0); start.id_ = start.x_ * n + start.y_; start.pid_ = start.x_ * n + start.y_; goal.id_ = goal.x_ * n + goal.y_; start.h_cost_ = abs(start.x_ - goal.x_) + abs(start.y_ - goal.y_); // Make sure start and goal are not obstacles and their ids are correctly // assigned. grid[start.x_][start.y_] = 0; grid[goal.x_][goal.y_] = 0; start.PrintStatus(); goal.PrintStatus(); PrintGrid(grid); constexpr int generations = 10000; constexpr int popsize = 30; constexpr double c = 1.05; constexpr bool shorten_chromosome = true; constexpr int path_length_x_factor = 4; GeneticAlgorithm new_genetic_algorithm(grid); new_genetic_algorithm.SetParams( generations, popsize, c, shorten_chromosome, static_cast(path_length_x_factor * start.h_cost_)); const auto [path_found, path_vector] = new_genetic_algorithm.Plan(start, goal); PrintPathInOrder(path_vector, start, goal, grid); } #endif // BUILD_INDIVIDUAL